
Appears in the Proceedings of the 23rd IEEE International Conference on Field-Programmable Technology (FPT), 2024

MultiQueue-Based FPGA Routing: Relaxed A*
Priority Ordering for Improved Parallelism

Alexandre Singer,∗ Hang Yan,∗ Guozheng Zhang,∗ Mark C. Jeffrey,∗ Mirjana Stojilović,§ and Vaughn Betz∗
∗Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada

§School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland
{alex.singer@mail, hang.yan@mail, guozheng.zhang@mail, mcj@ece, vaughn@eecg}.utoronto.ca∗, mirjana.stojilovic@epfl.ch§

Abstract—Routing is a critical part of the FPGA CAD flow.
Its solution quality greatly impacts design speed and power, and
its run time significantly contributes to overall compile time.
As FPGA design size grows but per-core CPU performance
stagnates, parallel FPGA routing algorithms that can leverage
multiple compute cores become increasingly valuable. Most prior
work in parallel FPGA routing uses coarse-grained approaches
that route nonoverlapping nets in parallel; this work targets a
complementary fine-grained form of parallelism in which the
shortest-path algorithms that complete a single connection are
multi-threaded. We speed up several related shortest path algo-
rithms (Dijkstra’s, A*, and directed) by utilizing a concurrency-
friendly but weakly ordered data structure, the MultiQueue,
and enhance the algorithms to compensate for its imperfect
ordering of partial routings. Compared to the VTR 8+ router,
these techniques achieve routing time reductions of 18.7× and
13.2× on average over the Titan benchmark suite when using
Dijkstra’s and A* path search, respectively, on a 12-core CPU.
These parallel algorithms achieve wirelength and critical path
delay quality comparable to the serial router; they are also
deterministic and serially equivalent. When applied to directed
search routing, the parallel path search achieves a speed-up of
1.98× and a slightly higher quality than the serial VTR router,
but is nondeterministic. Thanks to queue improvements, our
router at 1-thread is 1.7× faster than VTR’s for Dijkstra’s and
A* search, but comparable in run time for directed search.

Index Terms—Parallel routing, FPGA, Concurrent priority
scheduling, Determinism, Parallel path search

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are seeing adop-
tion in various application domains thanks to their efficiency
vs. processor-based solutions and their time-to-market vs. cus-
tom computer chips (ASICs) [1]. However, a major barrier to
further expansion of FPGA use is their long development cycle
compared to software-programmable platforms such as CPUs
and GPUs; a major contributor to their lengthy design cycle
is the long (often many hours) compile time to implement
each iteration of an FPGA design. Research into faster FPGA
Computer-Aided Design (CAD) tools has become even more
important as process scaling has increased FPGA capacity to
millions of logic elements and beyond [2], while single-core
CPU performance has nearly stagnated [3].

Routing, which determines the wires and programmable
switches each net will use, is one of the most time-consuming
steps in the FPGA CAD flow. It has a large impact on the
design’s maximum operating frequency and the amount of

target

source

(a) Serial wave expansion.

target

source

(b) Parallel wave expansion.

Fig. 1: Serial vs. parallel path-search wave expansion. Ex-
plored nodes (routing wires) and the edges (programmable
switches) used to reach them are green. Nodes on the expan-
sion frontier (in the queue) and the edges used to reach them
are orange. The nodes currently being explored are blue.

wiring (and hence power) used. State-of-the-art FPGA routers
are based on negotiated congestion [4], which repeatedly per-
forms path searches through a large graph (tens to hundreds of
millions of nodes) that represents the routing resources of the
chip. Despite significant work on incremental approaches to
reduce connection re-routing [5], [6] and efficient congestion
resolution algorithms [7], [8], finding a legal and performant
routing in such a large graph remains time-consuming. An-
other approach to scaling these algorithms is to divide the work
over multiple CPU cores, which is becoming more attractive
as the core count of servers continues to increase [9], [10].

Most parallel FPGA routing approaches are coarse-grained:
they route nets in nonoverlapping FPGA partitions in paral-
lel [11]. In theory, these approaches can extract significant
parallelism. However, modern FPGA designs in practice con-
tain high-fanout nets that span much of the device, take a long
time to route, and are generally routed serially due to overlap
with other nets. We explore a different and complementary
fine-grained approach that parallelizes the pathfinding process
for a single connection.

Fig. 1 illustrates how fine-grained parallel routers can speed
up the path search step. Nodes in the routing graph are visited,
the costs of their neighbors are calculated, and these neighbors
are pushed into a priority queue in a wave that expands from

1



the source to the target. A serial wave expansion would only
explore one node on the frontier (outlined by a dashed line) at a
time. A parallel wave expansion explores multiple nodes on the
frontier concurrently to reduce run time. Speeding up the path
search at the core of a routing algorithm is highly attractive
since this is the largest CPU time consumer in even highly
performant algorithms, which use incremental approaches to
reduce how often connections are re-routed or coarse-grained
parallelism to route nets in parallel.

Parallel path search introduces several challenges. First,
the priority queues used to order node exploration typically
limit concurrency as multiple threads cannot access the same
top-priority element without contention. Concurrency-friendly
queues, such as the MultiQueue, can mitigate this bottleneck
at the cost of imperfect ordering [12]. Without algorithmic
upgrades, this imperfect ordering will lead to suboptimal paths
that can hurt solution quality. Finally, a straightforward parallel
path search is nondeterministic (i.e., it can return different
solutions in different runs), which is undesirable for CAD
tools as it complicates debugging and is unacceptable for some
security-conscious end users [13].

We resolve these challenges via the following contributions:
• We formulate a relaxed version of the A* Shortest Path

Algorithm, which is deterministic and serially equivalent
regardless of node traversal order (Section III).

• We integrate a fine-grained parallel router into the state-
of-the-art routing algorithm in the Verilog to Routing
(VTR) project. It is open source so other researchers can
build upon it (Section IV).

• We demonstrate a route time speedup of 18.7× and 13.2×
on a Dijkstra’s and A* path search, respectively, on 12
threads. Even using a directed search, which explores less
of the routing graph at the risk of suboptimal paths, we
demonstrate a 1.98× speedup on 12 threads (Section V).

II. BACKGROUND

A. FPGA Routing
The task of FPGA routing is to find an overlap-free set

of trees in the routing graph, where each tree is rooted at the
source of a net, and its leaves are all the net sinks. The routing
graph models the routing resources of the FPGA, where
nodes correspond to pins and wires, and edges model the
programmable routing switches. The path from a net source to
a sink implements a single connection. To form a legal routing,
the routing trees for different nets must be disjoint (not share
any nodes). Routing algorithms seek to minimize the amount
of wiring used to reduce power and minimize node and edge
delays for timing critical connections to maximize operating
frequency [14]. This is a computationally hard problem, so op-
timal solutions are not feasible for reasonably-sized problems,
and heuristics are employed instead. The dominant approach is
based on the PathFinder negotiated congestion algorithm [4]. It
iteratively routes connections one at a time, applying delay and
congestion costs that lead to wiring and timing-efficient routes
and force negotiation between connections for in-demand
nodes.

T

S

(a) Dijkstra’s

T

S

(b) A*

T

S

(c) Directed

Fig. 2: Wave expansions from source S towards target T .

A key subroutine of PathFinder is the path search, which
finds the lowest-cost path from a source node to a sink.
Dijkstra’s algorithm can be used for this search [15]. It inserts
the source node into a priority queue, repeatedly removes the
lowest cost node, finds the cost of its neighboring nodes, and
inserts them into the priority queue. When the sink (target) is
reached, the lowest cost path has been found.

When structural information about the routing graph can be
used to predict the remaining cost from a node to the sink,
A* algorithms can find the lowest-cost path to the sink while
exploring less of the graph [16]. An A* algorithm searches
nodes in a priority order, where the priority is the sum of the
cost back to the source and the expected cost (heuristic) to the
target. To guarantee the lowest-cost path is found, the heuristic
must be admissible—it must never over-predict the cost to
the sink. In FPGA routing, paths that are slightly suboptimal
(not guaranteed to be the lowest-cost) are often acceptable, so
inadmissible heuristics that give a best guess of the remaining
cost to the sink are often used; these result in directed search
algorithms that can explore even less of the graph.

Fig. 2 visualizes the difference between these algorithms.
Dijkstra’s algorithm does not use a heuristic and hence ex-
plores equally in all directions from the source as shown in
Fig. 2a. The heuristic of an A* algorithm (Fig. 2b) leads
it to preferentially explore nodes closer to the target (sink),
reducing the fraction of the graph explored. A directed search
algorithm (Fig. 2c) uses an inadmissible heuristic to explore
even less of the graph, but may not find the shortest path.

Our work builds on the Adaptive Incremental Router (AIR)
of VTR [5], [17]. AIR improves on PathFinder in several ways.
First, it reduces the number of times connections are re-routed
by only re-routing illegal or timing-suboptimal portions of
routing trees. Second, it speeds up high-fanout net routing by
only inserting portions of the routing tree of such nets into the
priority queue when routing remaining connections. Finally, it
computes a heuristic specific to the target FPGA architecture
(the Map Router Lookahead) via a series of Dijkstra single-
source all-destination searches to estimate the minimum cost
paths from different types of nodes to destinations a specified
distance away. AIR’s heuristic is not a guaranteed underesti-
mate (it is inadmissible), so suboptimal paths are tolerated. In
practice, AIR often runs in a highly directed mode, scaling up
the heuristic to further reduce the graph portion searched.

2

https://github.com/verilog-to-routing/vtr-verilog-to-routing/tree/mq-parallel-router


B. Parallel FPGA Routing

Parallel FPGA routing techniques can be classified into
coarse and fine-grained [11]. Coarse-grained routing involves
netlist-level partitioning such that the FPGA regions, defined
by the spatial locations of net terminals, are disjoint [18], [19],
[20], [21], [22]. Hence, routing resources accessed by dif-
ferent threads are independent, which helps determinism and
convergence to a legal solution [23]. Coarse-grained routers
have drawbacks. First, speed and scalability are limited due to
modern FPGA designs having nets spanning large chip areas,
often needing serial routing. Second, as the number of threads
and netlist partitions increases, more nets cross partitions,
impacting parallel scalability. Finally, these routers are highly
sensitive to the net routing order [7]. In contrast, fine-grained
approaches accelerate the pathfinding for individual source-
sink connections without altering the net routing order. Few
works have explored fine-grained parallel routing [24], [25].

Gort and Anderson [24] report that 68% of PathFinder’s
route time (in VPR 5) is spent on maze expansion and pro-
pose multithreading to accelerate it. The main thread handles
sequential parts and synchronization, expanding a node and
signaling helper threads that new nodes are ready for cost
evaluation. Threads’ only task is to compute the costs of the
assigned neighbor nodes in parallel, insert them into local
priority queues, and wait at a synchronization barrier for all
threads to finish so that the main thread can take the lowest-
cost node, insert it into the global queue, and continue the
waveform expansion. This method is deterministic; however,
it results in only a 1.2× speedup with two threads and slow-
downs with more threads. Our approach eliminates frequent
barrier synchronization and unleashes more parallelism by
allowing threads to perform wavefront expansion in parallel.

Moctar and Brisk [25], [26] accelerate the path search
using speculative parallelism and the Galois framework [27].
Threads perform waveform expansion in parallel. A thread
removes a node from its local priority queue, identifies its
neighbors, and attempts to acquire locks for them before
proceeding. If a lock cannot be acquired because it is owned
by another thread, one of the conflicting activities is rolled
back. Unlike Gort and Anderson’s router [24], threads access
the global queue only when reaching the target node or their
local queue is empty. The authors report a 3.67× speedup with
eight threads [26], noting that the expensive misspeculation-
caused rollbacks and the limited scalability of the deterministic
scheduler affect the performance. In comparison, our router

Q Q Q Q QQQ Q

T T T T
Push Pop min of two queues

Priority
Queues

Threads

Fig. 3: A MultiQueue with four threads and two queues per
thread. Threads access lock-protected queues asynchronously.

is not speculation-based, and the number of locks threads
acquire during waveform expansions is greatly reduced. It is
difficult to directly compare to this approach, as it uses an older
routability-driven router in VTR 5 [26], which lacks key timing
optimizations. Our router is built on AIR, the timing-driven
router in VTR 8. As an incremental router, AIR performs less
work than its predecessors. Consequently, it is several times
faster [17] but also leaves less room for parallel scalability.

C. Concurrent Priority Schedulers

Concurrent Priority Schedulers (CPSs) play a crucial role
in parallelizing priority-ordered algorithms such as the path
search in FPGA routing. They are often designed for high op-
eration throughput and allow concurrent access across threads.
A CPS organizes elements in some programmer-defined pri-
ority order and distributes them among threads for execution.
For higher scalability, practical CPSs relax the strict priority
ordering, dispatching elements in priority order on a best-
effort basis. With relaxation, cores execute some high-priority
elements in parallel, but not necessarily the highest-priority
element. This trades more parallelism for the cost of reordering
elements, potentially causing redundant work. Algorithms that
use relaxed scheduling must have the means to tolerate the
potential inversions in the priority order, ensuring convergence
towards correct or deterministic solutions [28].

The MultiQueue [12] is a CPS that maintains probabilistic
theoretical bounds on the degree of relaxation. Fig. 3 shows a
MultiQueue comprising c · p lock-protected priority queues,
where p is the number of threads and c > 1 is a tuning
parameter. It supports two operations: push and pop. push
selects a queue at random and inserts an element (i.e., a routing
node to explore) to it if its lock is successfully acquired. On the
other hand, pop first chooses two queues uniformly at random,
examines the top elements of both queues and chooses the
queue with the higher priority top element (i.e., the lower-cost
node). If pop acquires the selected queue’s lock, it extracts the
top element from that queue; otherwise, it loops and selects a
new pair of queues. This design ensures that a popped element
is, in expectation, in the top O(cp) highest-priority elements
in the entire MultiQueue [29].

III. A* WITH RELAXED PRIORITY ORDERING

This work leverages a concurrency-friendly queue to enable
parallel A* and related path-search algorithms; however, the
relaxed node ordering of this queue introduces challenges in
deterministically finding optimal (lowest-cost) paths.

A. Tie-Breaking

In many graphs, multiple optimal paths exist. In a serial
implementation of A*, the nodes are always traversed in the
same order, so the same path is deterministically returned
even when multiple lowest-cost paths exist. However, parallel
implementations explore multiple nodes simultaneously. Using
the standard A* technique of adding a node to the priority
queue the first time it is reached would then lead to nondeter-
minism as there is a fundamental race in the algorithm.

3



S

T

1

42

3
5

8

76

(a) Four paths

1

3
5

8

S

T

42

76

(b) Two paths

1

3
5

8

S

T

42

76

(c) Final path

Fig. 4: Using edge IDs to break ties between multiple equally
optimal paths. The red node is being explored and green nodes
are on the chosen path to it.

To achieve determinism, one path must always be chosen
over all others. In serial A*, this is guaranteed by strict node
traversal ordering; the first optimal path found is chosen. For
parallel implementations, which do not have a strict node
traversal ordering, a tie-breaking condition is needed.

We define the tie-breaking condition as follows: If a node n
is a member of multiple optimal paths, choose the path where
the edge entering n is preferred. Many functions can be used
to decide if an edge is preferred over another; however, given
two edges, this function must always prefer the same edge.
We use edge identifiers (IDs) to break ties, as they are unique
in VTR:

ISPREFERRED(e1, e2) = ID(e1) < ID(e2).

Since it is unknown which path will ultimately be optimal,
ties are broken whenever a new path to n is found.

Fig. 4 illustrates how the above function can break ties and
produce a unique optimal path. Fig. 4a shows an example
sub-graph with four possible optimal paths from source S
to target T . The numbers on the edges correspond to edge
IDs. Tie-breaking starts with the red node in Fig. 4b: the path
through edge 3 is chosen over edge 4 because of the lower
edge ID, reducing the number of optimal path candidates by
half. Moving onto the next red node (Fig. 4c), the path through
edge 7 is chosen over edge 8, leaving a single optimal path
in green. An important observation is that the tie-breaking
could have been performed on either node at any time (even
concurrently) and the result would always be the same.

This tie-breaking strategy may produce invalid solutions on
graphs containing zero-cost cycles (paths in the graphs with
zero cost that start and end at the same node). Fortunately,
zero-cost loops do not occur in FPGA routing graphs.

B. Stopping Criterion
Unlike a traditional A* implementation, the algorithm can-

not terminate when the target is reached the first time. Due to
the relaxed node traversal order, the target may be reached by a
higher-cost path before an optimal path is found. Additionally,
if there are multiple optimal paths, the algorithm must explore
them all to ensure the ties are broken deterministically.

Therefore, we introduce a new stopping criterion: For node
n, target t, and priority queue Q, stop when:

∄n ∈ Q s.t. BestCost(n) + h(n) ≤ BestCost(t). (1)

BestCost(n) is the best cost found so far for the path
from the source node to node n, and h(n) is an admissible
prediction for the cost of the optimal path from node n to target
t. If no node n that satisfies the inequality is in the priority
queue, then no path can be traversed that will be better than
the current best path to t; hence, the algorithm can terminate.

We enforce the stopping criterion by exploring all nodes in
the queue, and use what we call Post-Target Pruning to reduce
the number of nodes explored: Prune a given node (do not
explore it) if the cost of the best possible path from the source,
through the node, to the target is higher than the cost of the
best path found to the target so far. Combined with the tie-
breaking condition described earlier, enforcing this criterion
ensures that the path returned by the algorithm is optimal and
always the same, regardless of the node traversal order.

C. Heuristic Requirements

Standard A* requires an admissible heuristic to order the
traversal of nodes. Since our relaxed order A* can traverse
nodes in any order while guaranteeing optimal paths, the
heuristic can be split in two.

1) Ordering Heuristic (ho): This is used to order nodes in
the queue, providing a hint for what nodes should be explored
first. Since the order of node traversal can be relaxed in this
algorithm, this heuristic does not need to be admissible. This
allows the use of heuristics that are more accurate (lower
error between actual and expected cost), but not necessarily
underestimating. We will show in Section V that this freedom
can be exploited to make the search more efficient.

2) Stopping Heuristic (hs): This is used to compute h(n) in
the stopping criterion (Ineq. 1). For the algorithm to guarantee
optimal paths and determinism, hs must be admissible.

IV. MULTIQUEUE-BASED PARALLEL PATH SEARCH

Below we detail a MultiQueue-based path search that im-
plements the enhancements of Section III. Given an admissible
stopping heuristic, this algorithm performs an A* search; with
an inadmissible heuristic, it is a directed search; and with a
heuristic of zero, it reduces to a parallel Dijkstra’s algorithm.
To maximize scalability, our algorithm also minimizes locking
and prunes nodes (partial paths) as soon as possible.

A. Algorithm Description

The MultiQueue-based parallel path search algorithm is
described in Algorithm 1. s denotes the source, t the target,
u the node currently being explored, v a neighbor node of u,
and e the edge between nodes u and v. gn is the (known)
backward path cost from s to a node n. fn is the estimated
total cost for a path from s, through n and to t. fn is calculated
as the sum of gn and ho

n, where ho
n is the ordering heuristic

defined in Section III-C that estimates the cost from n to t.
Compared to a serial path search algorithm, key modi-

fications include replacing the serial priority queue with a
MultiQueue, relaxing the exit condition for optimality, adding
tie-breaking checks to ensure determinism, and protecting
the global node-cost updates with locks. In the following
subsections, we discuss the algorithmic changes step-by-step.

4



Algorithm 1 Parallel MultiQueue-Based Path Search

1: procedure FINDSHORTESTPATH(source s, target t)
2: MQ← INITMULTIQUEUE(s) ▷ on main thread
3: while TRYPOP(u, fu) from MQ do ▷ on all threads
4: if POSTPOPPRUNE(u, fu, t) then continue
5: for e ∈ all out edges of u do
6: v ← the neighbor of u on e
7: gv ← BACKWARDCOST(u, v, e)
8: ho

v ← ORDERINGHEURISTICCOST(v, t)
9: fv ← gv + ho

v

10: if PREPUSHPRUNE(v, gv , e) then continue
11: ACQUIRELOCK(v)
12: if PREPUSHPRUNE(v, gv , e) then
13: RELEASELOCK(v)
14: continue
15: UPDATEGLOBALNODECOSTS(v, gv , fv , e)
16: RELEASELOCK(v)
17: if v ̸= t then PUSH(v, fv) to MQ

18: return RECONSTRUCTPATH(s, t) ▷ on main thread

1) Try-Pop from MultiQueue: The MultiQueue described in
Section II-C provides a thread-safe pop operation with relaxed
priority ordering. When the path search is running, multiple
threads try to pop from the MultiQueue concurrently. Each
thread will pop a node, explore its neighbors, and repeat. To
ensure the stopping criterion from Section III-B is met, threads
continuously pop until the queue is empty. At the same time,
the TryPop routine waits until all threads reach a consensus
that all queues are empty and there is no more work to do.
This is essential as the MultiQueue could become transiently
empty while a thread is still expanding the neighbors of a node
it just popped.

2) Prune Nodes: Both pre-push and post-pop pruning,
described in Algorithm 2, are crucial for reducing redundant
work, finding optimal paths, and maintaining determinism.

After node u is popped from the queue, PostPopPrune
decides whether to explore the neighbors of u or to prune.
Initially, it performs Post-Target Pruning based on the stopping
criterion. This check uses the stopping heuristic (hs

u) to prune
u if it could not possibly lead to a better path to the target
(Section III-B). Then, the current total estimated cost of the
path through node u (fu) is compared to the best total cost
so far (most recently pushed) for that node and, if the two are
different, the node u is pruned. During the wave expansion, u
may be pushed to the queue multiple times. For example, node
u may be pushed to the queue and then, before u is popped
from the queue, a better path to u may be found and pushed to
the queue. Here we are using fu as an optimistic identifier to
check if the pair (u, fu) is the most recently pushed element
for node u. This reduces redundant work.

When iterating over the neighbors of u, PrePushPrune
determines whether a path through u to its neighbor node v
has a better backward cost than the best path to v found so far
(breaking ties if needed). Section III-A details tie breaking.

Algorithm 2 Pruning Functions

1: function POSTPOPPRUNE(u, fu, t) ▷ read-only
2: if POSTTARGETPRUNE(u, t) then return True
3: if fu ̸= BESTTOTALCOST(u) then return True
4: return False ▷ do not prune
5: function PREPUSHPRUNE(v, gv , e) ▷ read-only
6: if gv > BESTBACKWARDCOST(v) then return True
7: if gv = BESTBACKWARDCOST(v) then
8: return ! ISPREFERRED(e, BESTPREVEDGE(v))
9: return False ▷ do not prune

10: function POSTTARGETPRUNE(u, t) ▷ read-only
11: gu ← BESTBACKWARDCOST(u)
12: hs

u ← STOPPINGHEURISTICCOST(u, t)
13: gt ← BESTBACKWARDCOST(t)
14: if gu + hs

u > gt then return True
15: return False ▷ do not prune

3) Conditionally Atomically Update Global Node Costs:
The parallel path search algorithm maintains the best path
information in shared node cost variables. A per-node lock
protects the update to these costs to prevent data races, creating
a critical section from Line 11 to 16 in Algorithm 1. The pre-
push pruning, which determines whether to update the node
costs, must be atomic with the update itself to ensure updated
data is valid (Line 12). Since different threads rarely work on
the same node simultaneously, we use a fine-grained locking
strategy of one lock per node to reduce contention. To further
reduce lock contention, we add a cheap read-only check before
acquiring the lock (Line 10), motivated by Shun et al. [30].

4) Push Neighbors into MultiQueue: During neighbor ex-
pansion, nodes are pushed into the queue in a thread-safe
manner using the MultiQueue push operation. Locking occurs
on individual queues within the MultiQueue, so spreading
node insertions and the resulting heap updates across multiple
queues reduces lock contention and improves concurrency.

Pop Node u from MQ

Initialize MQ to s

Reconstruct Path

...

Execute Path
Search Loop

Helper Thread

Main Thread

empty
MQ is

Helper Thread

Next path searchNext path search

First Barrier

Second Barrier

For each Neighbor v of u:
if v is not pruned,

update global costs of v
and push v to MQ

u is not pruned

All neighbors done

Execute Path
Search Loop

Next path search

Fig. 5: The multi-threading strategy of the router.

5



B. Multi-Threading Strategy
The connection router will be invoked many times—once

for every connection to be routed. Creating new threads for
each invocation would be expensive, so we create all threads
at the start of routing and organize them as shown in Fig. 5.

N threads collaboratively but asynchronously route each
connection. Initially, threads synchronize at the first barrier,
waiting for the main thread to initialize the MultiQueue with
the net source. Next, all threads execute the path search loop
(Algorithm 1). When all threads agree that the MultiQueue is
empty, they synchronize at the second barrier to allow the main
thread to then reset the MultiQueue, reconstruct the routed
path, reset the global node state, and push the next net source
to the MultiQueue for the next connection route. When the
routing algorithm completes, the main thread sets a flag in the
router destructor, causing helper threads to self-destruct.

C. Integration within VTR
Our parallel router is open source and built on top of the

VTR 8+ serial router; allowing for a fair, direct comparison.1
1) Data Structure and Memory Optimization: The AIR

router within VTR uses a complex dynamic memory allocation
scheme so that the heap implementing its priority queue can
grow as needed with few calls to new. This approach would
be challenging to make thread-safe. Instead, we changed the
node pruning strategy so that pushing a node to the heap
requires storage only for its unique ID (n) and its fn value.
The node ID indexes into the GlobalNodeCosts vector,
which stores other node states such as the backward cost, gn.
Post-pop pruning (Algorithm 1 Line 4) ensures that the entry in
GlobalNodeCosts[n] always contains the data associated
with the most promising path to n found so far.

2) MultiQueue Enhancement: The MultiQueue can use
an arbitrary heap as its underlying data structure. We find
that the VTR binary heap outperforms other commonly used
heap implementations, such as the STL heap. When used in
path search, it is designed to be more cache-friendly and
reduce arithmetic operations when maintaining the heap. Using
the VTR-like binary heap in the MultiQueue is particularly
beneficial when the heap becomes large (i.e., when a large
part of the graph needs to be explored).

In some of the path search algorithms discussed in Sec-
tion II-A, when no further solutions need to be explored to
guarantee optimality or determinism after reaching the target,
we could empty a queue quickly by discarding all elements
within it. To enable this queue draining optimization, we
enhance the MultiQueue by adding a clear (drain) method.

3) Heuristic Transformation: The VTR heuristic, hVPR, is
not guaranteed to be admissible (Section II-A). We apply
an affine transformation on hVPR to calculate the stopping
heuristic, hs, and ordering heuristic, ho, to make them admis-
sible when necessary. We use the following factor and offset
approach and pass these as command-line options to VPR:

hs/o = max
(
0,
(
hVPR − offsets/o

)
× factors/o

)
, (2)

1GitHub Repo: vtr-verilog-to-routing Branch: mq-parallel-router

TABLE I: Ordering and Stopping Heuristics

Dijkstra’s ho = 0 hs = 0

A* ho = 0.9×hVPR
§

hs
VTR = hVPR−3.05×10−10

hs
Koios = hVPR − 7.2× 10−10

hs
Titan = hVPR − 3.2× 10−10

Directed ho = 1.2× hVPR
§ hs = 1.2× hVPR

§

All offsets are architecture-specific and were empirically found.
§ Heuristic is not admissible.

where s or o is used depending on the context.
The stopping heuristic hs must be admissible for our path

search algorithm to guarantee optimal paths and be determinis-
tic (III-C). The ordering heuristic only needs to be admissible
when the queue draining optimization described above is used;
admissibility is necessary in that case to ensure emptying
queues of entries with higher costs does not prune possibly
superior solutions.

V. RESULTS

We evaluate the performance and quality of results (QoR)
of our parallel router used within the overall AIR routing
algorithm [5], [17]. Our parallel path search is integrated into
VTR 8+ (commit c1c1e3dc6 of March 2024) and compared
to the unmodified VTR 8+ router (in that commit).

A. Methodology

We run our experiments on an Intel Xeon E5-2650 v4 CPU
with a base frequency of 2.2 GHz running Ubuntu 16.04 with
12 physical cores in a single socket and 128 GiB of DRAM.
We use the MultiQueue implementation by Zhang et al. [31].
We find that setting the number of queues per thread (c in
Section II-C) to four works best for our application.

This work is tested on three benchmark suites: the eight
largest circuits from the VTR Benchmark suite (general work-
loads) [32], the 11 largest circuits from the Koios 2.0 Bench-
mark suite (deep learning workloads) [33], and 22 designs
from the Titan23 Benchmark suite2 (large workloads) [34]. We
run the VTR benchmarks on VTR’s flagship architecture [17],
the Koios benchmarks on a 22 nm Intel-like architecture
described by Arora et al. [33], and the Titan benchmarks on
a Stratix IV architecture capture [34].

VTR can perform either Fixed Channel Width Routing or
a Minimum Channel Width Search. We consider the former
as an example of (mostly) low-stress routing (limited con-
gestion) and the latter as an example of high-stress routing
(considerable congestion). The VTR benchmarks have a fixed
channel width set to 1.3× the minimum channel width (found
by VTR’s serial router) for each circuit; the Koios and Titan
benchmarks have a channel width set to 300. A minimum
channel width search performs a binary search over different
channel widths for each circuit to find the smallest channel
width that is routable; hence, much of the routing performed
will be under high-stress conditions.

2The largest Titan design (gaussian blur) was excluded as it does not
successfully route in VTR with default placement effort.

6

https://github.com/verilog-to-routing/vtr-verilog-to-routing/tree/mq-parallel-router


TABLE II: Parallel Router (12T) Speedup Over VTR 8+

Task Serial
Algorithm

Parallel
Algorithm

VTR
Speedup

Koios
Speedup

Titan
Speedup

Fixed
Channel
Width

Dijkstra’s Dijkstra’s 8.32× 11.4×⋆5 18.7×⋆14

A* A* 5.51× 11.0× 13.2×⋆2

Directed Directed † 1.28× 1.63× 1.98×
Directed A* 0.67× 0.11× 0.43×

Min
Channel
Width
Search

Dijkstra’s Dijkstra’s 6.05×⋆1 - -

A* A* 3.85× - -

Directed Directed † 2.18× 2.68× -

Directed A* 1.51× 1.31× -
† The parallel router is nondeterministic for directed search.
⋆ Number of dropped circuits due to serial router timeouts (12 hours).

Our parallel router can be configured to perform one of three
path search algorithms by selecting ordering and stopping
heuristics, shown in Table I. Setting both heuristics to zero
gives Dijkstra’s algorithm. Although Dijkstra’s algorithm is
not commonly used in FPGA routing because it is much slower
than A* and achieves the same QoR, it is used within VTR to
compute the Map Router Lookahead, which relies on single-
source all-destinations searches (Section II-A). Computing the
router lookahead for an FPGA architecture can take an hour
or more, motivating faster Dijkstra implementations.

An admissible stopping heuristic yields an A* search. For
each architecture we found an admissible heuristic by observ-
ing the difference between hVPR and the actual cost of paths.
Since VTR is used for architecture exploration, hVPR is usually
computed at run time. To make the run time manageable, VTR
coarsens its heuristic, leading to estimation errors.

hVPR can be scaled up to produce a directed search. VTR
does this by default (hVPR, DEF = 1.2 × hVPR) to find a
path faster at the expense of quality. Since hVPR, DEF is not
admissible, the path returned is not guaranteed to be the
lowest-cost path; however, FPGA routing algorithms make
many approximations, so a small quality loss due to using
hVPR, DEF is tolerable. Using hVPR, DEF as the stopping heuristic
in our parallel router will lead to nondeterministic results.

The queue draining optimization (Section IV-C) generally
provides around an 8% improvement in run time for path
search; however, using queue draining on deterministic A*
resulted in around a 30% slower run time than not using
queue draining due to needing an admissible ordering heuristic
(which worsens the node exploration of A*). Consequently, all
path search algorithms except A* use queue draining.

B. Parallel Router Performance

Table II summarizes the speedups achieved by the parallel
router running with 12 threads compared to VTR’s serial router
on different path search algorithms for both fixed channel
width routing and minimum width searches. Table III similarly
shows the critical path delay (CPD) and wirelength (WL) for
those same tests, normalized to the results of VTR’s serial
router. Each circuit was given a timeout of 12 hours. Although
the parallel router completed all circuits within the time limit,

TABLE III: Parallel Router (12T) Quality of Results

Serial
Algorithm

Parallel
Algorithm

VTR Koios Titan
CPD WL CPD WL CPD WL

Dijkstra’s Dijkstra’s 1.00 1.00 1.03 1.00 1.00 1.00
A* A* 1.00 1.00 0.99 1.00 1.01 1.00

Directed Directed † 1.00 1.00 1.02 0.98 0.98 0.99
Directed A* 1.00 0.99 0.99 0.96 0.99 0.99

All values are normalized to the results of VTR’s serial router.
† The parallel router is nondeterministic for directed search.

if VTR’s serial router timed out on a circuit, that circuit was
excluded from the geomean speedup. The dashes in the table
are when all of the circuits timed out on VTR’s serial router.

The first three rows of the tables show the parallel and
serial routers performing the same path search algorithm. For
Dijkstra’s and A*, the parallel router achieves the largest
speedups and has QoR similar to the serial router. A desirable
quality of the parallel router for these searches is that it is
serially equivalent; meaning it always obtains the same result,
regardless of the number of threads used. This is due to
the stopping criterion and tie-breaking condition, described in
Section III, ensuring that the same path is always returned.
For directed, the parallel router is faster and achieves slightly
better QoR (as threads explore more nodes before the target
is reached). The parallel router is nondeterministic when
performing a directed search; however, the standard deviation
of the CPD and WL normalized to their means is below 0.07%.

The fourth row of the tables shows the speedup and QoR
for the parallel router running A* (determinism is desired)
compared to the VTR’s serial router running directed (default
settings). Since the parallel router returns the lowest-cost paths,
it often gets a better QoR than the serial router; however, since
it explores more of the graph, it is ∼1.5× (VTR benchmarks)
to ∼9.1× (Koios benchmarks) slower. The wide variation in
the slowdown is due to the varying accuracy of hVPR for
the different architectures. As Table I shows, ho for Koios
requires a larger offset to hVPR to guarantee admissibility. This
demonstrates the importance of a good quality heuristic.

Parallel 1T and 
Serial Router 

timed out.
T/OT/O

18.7×

1.0×

1.7×

13.2×1.0×1.0×2.0×

Dijkstra’sA*Directed

120
110
100
90
80
70
60
50
40
30
20
10
0

G
eo

m
ea

n 
R

ou
te

 T
im

e 
(m

in
s)

Serial Router
Parallel 1T
Parallel 12T

Fig. 6: Geomean route time for the parallel router using 12 or a
single thread vs. VTR’s serial router on the Titan benchmarks.
Above the bars are the speedups over the serial router.

7



The parallel router generally achieves higher speedups on
larger circuits with more complex FPGA architectures (Titan)
than on smaller circuits with less complex FPGA architectures
(VTR). It also tends to achieve higher speedups for Dijkstra’s
algorithm than for A*, and for A* than for directed. This is
due to the increased amount of parallelizable work when larger
graphs are traversed and more of the graph is explored.

Fig. 6 shows how the parallel router achieves a 13.2×
speedup with 12 threads on the Titan benchmarks for A* dur-
ing fixed channel width routing. As discussed in Section IV-C,
the parallel router uses a queue optimized for parallel node
storage. This optimization benefits larger wave expansions,
while the serial VTR is better tuned for smaller expansions.
Consequently, the parallel router achieves a 1.7× speedup over
serial VTR on A* with a single thread; however, for directed
path search, both routers have similar run times with one
thread.

Fig. 7 shows the proportion of the route time for path search
for the different search algorithms using VTR’s serial router
on Titan with fixed channel width routing. Amdahl’s Law [35]
implies that the highest achievable speedup on a directed
search of Titan is 1

(1−0.61) = 2.5×. Compared to VTR’s
serial router with default settings (directed path search), our
parallel router achieves 2× overall (nondeterministic) route
time speedups, nearly reaching this scalability ceiling.

For minimum channel width searches, the parallel router
always outperforms VTR’s serial router. Even when determin-
ism is required, and the parallel router is using an admissible
stopping heuristic while the serial router is not, the parallel
router achieves a 1.3× (Koios benchmarks) and 1.5× (VTR
benchmarks) speedup. We attribute this to many of the routing
instances of minimum channel width search being in high
stress conditions with considerable congestion that makes a
more directed heuristic less effective and requires more of the
graph to be explored, playing to the parallel router’s strengths.

C. Parallel Router Scalability

Fig. 8 shows the geomean run time speedup of the par-
allel path search (excluding other routing tasks) running path
searches on the Titan benchmarks. The larger wave expansions
produced by Dijkstra and A* searches lead to good scalability
to 12 threads, while the smaller wave expansions of directed
searches have limited scalability beyond six threads.

0% 20% 40% 60% 80% 100%

Directed

A*

Dijkstra’s

Other Routing TasksPath Search Time

61%

95%

98%

Fig. 7: Path search time as a proportion of overall route time
for the Titan benchmarks using VTR’s serial router. Other
routing tasks include path reconstruction, timing analysis,
graph congestion cost updates, and resetting global node costs.

Directed
A*
Dijkstra’s
Ideal

1 2 3 4 5 6 7 8 9 10 11 12

12
11
10
9
8
7
6
5
4
3
2
1

Sp
ee

du
p 

ov
er

 P
ar

al
le

l 1
T

Number of Threads

Fig. 8: Geomean path search run time speedup on Titan.

VI. CONCLUSIONS AND FUTURE WORK

We present an open-source MultiQueue-based, fine-grained
parallel router with relaxed node traversal ordering based
on VTR’s serial router. Our router deterministically returns
the same optimal path, regardless of the number of threads,
through algorithmic upgrades to the A* Shortest Path Algo-
rithm. Compared to VTR’s serial router, we measure route time
speedups at 12 threads of 18.7× and 13.2× on Dijkstra’s and
A* path searches, respectively. Compared to the VTR router’s
default (directed search) settings, our router achieves better
QoR 2× faster but is nondeterministic in this mode.

A limitation of this work is that the algorithm cannot
produce deterministic results when the stopping heuristic is
inadmissible. However, our algorithm could be run with an in-
admissible heuristic (enabling a directed search) by designers
who are comfortable with nondeterminism (potentially during
design tuning); a change of heuristic enables deterministic re-
sults for final implementation if needed. The results presented
in this work also use a simple scaling and shifting technique
to generate admissible heuristics from VTR’s inadmissible
heuristic. Improvements to VPR’s architecture-aware heuristic
generator to make it more accurate (and hence require less
shifting and scaling to become admissible) would speed up our
parallel A* router, potentially enabling it to overtake the serial
directed search in speed while enhancing quality. Since our
parallel algorithm performs well on Dijkstra searches, it could
enable a more accurate VTR router lookahead by sampling
more routing start nodes within a time budget. Parallel path
search can also be combined with coarse-grained parallel
techniques that route multiple nets or connections in parallel
to scale to higher core counts.

VII. ACKNOWLEDGMENTS

This work was supported by the Intel/VMware Crossroads
3D Academic Research Center, NSERC, and QuickLogic. Mir-
jana Stojilović was partially supported by the Swiss National
Science Foundation (grant No. 218864). Guozheng Zhang was
partially supported by an Ontario Queen Elizabeth II Graduate
Scholarship.

8



REFERENCES

[1] A. Boutros and V. Betz, “FPGA Architecture: Principles and progres-
sion,” IEEE Circuits and Systems Magazine, vol. 21, no. 2, pp. 4–29,
May 2021.

[2] D. Lewis, G. Chiu, J. Chromczak, D. Galloway, B. Gamsa,
V. Manohararajah, I. Milton, T. Vanderhoek, and J. Van Dyken, “The
Stratix™ 10 highly pipelined FPGA architecture,” in Proceedings of
the 24th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA). Monterey, CA, USA: ACM, Feb. 2016, pp. 159–
168.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 6th ed. Morgan Kaufmann, 2019.

[4] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” in Proceedings of the third
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA). Monterey, CA, USA: ACM, Feb. 1995, pp. 111–117.

[5] K. E. Murray, S. Zhong, and V. Betz, “AIR: A fast but lazy timing-driven
FPGA router,” in 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC). Beijing, China: IEEE, Jan. 2020, pp. 338–344.

[6] D. Vercruyce, E. Vansteenkiste, and D. Stroobandt, “CRoute: A fast
high-quality timing-driven connection-based FPGA router,” in Proceed-
ings of the 27th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). San Diego,
CA, USA: IEEE, Apr. 2019, pp. 53–60.

[7] R. Y. Rubin and A. M. DeHon, “Timing-Driven Pathfinder Pathology and
Remediation: Quantifying and reducing delay noise in VPR-pathfinder,”
in Proceedings of the 19th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA). Monterey, CA, USA: ACM,
Feb. 2011, pp. 173–176.

[8] Y. Zha and J. Li, “Revisiting PathFinder routing algorithm,” in Pro-
ceedings of the 30th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA). Virtual Event, USA: ACM, Feb.
2022, pp. 24–34.

[9] C. Gianos, “Architecting for flexibility and value with next gen Intel®
Xeon® processors,” in 2023 IEEE Hot Chips 35 Symposium (HCS).
Los Alamitos, CA, USA: IEEE, Aug. 2023, pp. 1–15.

[10] K. Troester and R. Bhargava, “AMD next generation “Zen 4” core and
4th gen AMD EPYC™ 9004 server CPU,” in 2023 IEEE Hot Chips 35
Symposium (HCS). Palo Alto, CA, USA: IEEE, Aug. 2023, pp. 1–25.

[11] M. Stojilović, “Parallel FPGA routing: Survey and challenges,” in Pro-
ceedings of the 27th International Conference on Field-Programmable
Logic and Applications (FPL). Ghent, Belgium: IEEE, Sep. 2017, pp.
1–8.

[12] H. Rihani, P. Sanders, and R. Dementiev, “MultiQueues: Simple relaxed
concurrent priority queues,” in Proceedings of the 27th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). Portland, OR,
USA: ACM, Jun. 2015, pp. 80–82.

[13] A. Ludwin and V. Betz, “Efficient and deterministic parallel placement
for FPGAs,” ACM Trans. Des. Autom. Electron. Syst., vol. 16, no. 3, pp.
1–23, Jun. 2011.

[14] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Norwell, MA, USA: Kluwer Academic publishers,
Mar. 1999.

[15] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, Jul. 1968.

[17] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-
P. Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng,
P. Patros, J. Luu, K. B. Kent, and V. Betz, “VTR 8: High-performance
CAD and customizable FPGA architecture modelling,” ACM Trans.
Reconfigurable Technol. Syst., vol. 13, no. 2, pp. 1–55, Jun. 2020.

[18] M. Gort and J. H. Anderson, “Accelerating FPGA routing through
parallelization and engineering enhancements,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 31,
no. 1, pp. 61–74, Jan. 2012.

[19] M. Shen and G. Luo, “Accelerate FPGA routing with parallel recursive
partitioning,” in Proceedings of the International Conference on Com-
puter Aided Design (ICCAD). Austin, TX, USA: IEEE, Nov. 2015, pp.
118–125.

[20] C. Zhu, J. Wang, and J. Lai, “A novel net-partition-based multithread
FPGA routing method,” in Proceedings of the 23rd International Con-
ference on Field-Programmable Logic and Applications (FPL). Porto,
Portugal: IEEE, Sep. 2013, pp. 1–4.

[21] C. H. Hoo and A. Kumar, “ParaDRo: A parallel deterministic router
based on spatial partitioning and scheduling,” in Proceedings of the 26th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA). Monterey, CA, USA: ACM, Feb. 2018, pp. 67–76.

[22] Y. Zhou, D. Vercruyce, and D. Stroobandt, “Accelerating FPGA routing
through algorithmic enhancements and connection-aware paralleliza-
tion,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 13, no. 4, pp. 1–26, Aug. 2020.

[23] C. H. Hoo, Y. Ha, and A. Kumar, “ParaFRo: A hybrid parallel FPGA
router using fine grained synchronization and partitioning,” in Proceed-
ings of the 26th International Conference on Field-Programmable Logic
and Applications (FPL). Lausanne, Switzerland: IEEE, Aug. 2016, pp.
1–11.

[24] M. Gort and J. H. Anderson, “Deterministic multi-core parallel routing
for FPGAs,” in Proceedings of the IEEE International Conference on
Field Programmable Technology (FPT). Beijing, China: IEEE, Dec.
2010, pp. 78–86.

[25] Y. O. M. Moctar and P. Brisk, “Parallel FPGA routing based on the
operator formulation,” in Proceedings of the 51st Design Automation
Conference (DAC). San Francisco, CA, USA: IEEE, Jun. 2014, pp.
1–6.

[26] Y. Moctar, M. Stojilović, and P. Brisk, “Deterministic parallel routing
for FPGAs based on Galois parallel execution model,” in Proceedings
of the 28th International Conference on Field-Programmable Logic and
Applications (FPL). Dublin, Ireland: IEEE, Aug. 2018, pp. 21–214.

[27] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,” in
Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). San Jose, CA, USA:
ACM, Jun. 2011, pp. 12–25.

[28] A. Lenharth, D. Nguyen, and K. Pingali, “Priority queues are not
good concurrent priority schedulers,” in Proceedings of the International
European Conference on Parallel and Distributed Computing (Euro-
Par). Springer Berlin Heidelberg, Jul. 2015, pp. 209–221.

[29] D. Alistarh, J. Kopinsky, J. Li, and G. Nadiradze, “The power of choice
in priority scheduling,” in Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC). Washington, DC, USA:
ACM, Jul. 2017, pp. 283–292.

[30] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons, “Reducing
contention through priority updates,” in Proceedings of the 25th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).
ACM, Jul. 2013, pp. 152–163.

[31] G. Zhang, G. Posluns, and M. C. Jeffrey, “Multi bucket queues: Efficient
concurrent priority scheduling,” in Proceedings of the 36th ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA). ACM,
Jun. 2024, pp. 113–124.

[32] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,
and V. Betz, “VTR 7.0: Next generation architecture and CAD system
for FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 2,
pp. 1–30, Jul. 2014.

[33] A. Arora, A. Boutros, S. A. Damghani, K. Mathur, V. Mohanty,
T. Anand, M. A. Elgammal, K. B. Kent, V. Betz, and L. K. John, “Koios
2.0: Open-source deep learning benchmarks for FPGA architecture
and CAD research,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 42, no. 11, pp. 3895–3909, May
2023.

[34] K. T. Khoozani, A. A. Dehkordi, and V. Betz, “Titan 2.0: Enabling open-
source CAD evaluation with a modern architecture capture,” in Proceed-
ings of the 33st International Conference on Field-Programmable Logic
and Applications (FPL). Gothenburg, Sweden: IEEE, Sep. 2023, pp.
57–64.

[35] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of AFIPS Spring
Joint Computer Conference. Atlantic City, New Jersey, USA: ACM,
Apr. 1967, pp. 483–485.

9


	Introduction
	Background
	FPGA Routing
	Parallel FPGA Routing
	Concurrent Priority Schedulers

	A* with Relaxed Priority Ordering
	Tie-Breaking
	Stopping Criterion
	Heuristic Requirements
	Ordering Heuristic (ho)
	Stopping Heuristic (hs)


	MultiQueue-Based Parallel Path Search
	Algorithm Description
	Try-Pop from MultiQueue
	Prune Nodes
	Conditionally Atomically Update Global Node Costs
	Push Neighbors into MultiQueue

	Multi-Threading Strategy
	Integration within VTR
	Data Structure and Memory Optimization
	MultiQueue Enhancement
	Heuristic Transformation


	Results
	Methodology
	Parallel Router Performance
	Parallel Router Scalability

	Conclusions and Future Work
	Acknowledgments
	References

