
MusiLinx Audio Synthesizer
Final Report
ECE532H1 LEC0101

April 14th, 2023

Alexandre Singer
Arthur Bastos
Hamza Saddour

Fahim Rahman Talukder



1.0 Overview 1
2.0 Outcomes 2
3.0 Project Schedule 3
4.0 Description of the Blocks 5

4.1 Custom IPs 5
4.1.1 AudioVoice 5
4.1.2 Mixer 9
4.1.3 AudioSampleToAxiStreamAudio 10
4.1.4 Sequencer 12
4.1.5 TempoGenerator 13
4.1.6 AudioPulseGen 14

4.2 Xilinx / Digilent IPs 15
4.2.1 AXI IIC Bus Interface 15
4.2.2 I2S Transmitter 15
4.2.3 MicroBlaze 15
4.2.4 AXI GPIO 15
4.2.5 PS2-AXI Receiver 16
4.2.6 AXI Interrupt Controller 16

5.0 Description of the Design Tree 16
6.0 Tips and Tricks 16

6.1 Tips and Tricks for the Technical Aspect of any project 16
6.2 Tips and Tricks for Team Dynamics 17

7.0 User guide to Musilinx 17
References 20



1.0 Overview

MusiLinx Audio Synthesizer is an Audio Synthesizer with 32 voices tuned to the Western Music
Scale with notes ranging from C3 (130.81Hz) to G5 (783.99Hz). All voices can produce classic
Subtractive Synthesis waves such as Triangle, Sawtooth and Square waveforms and can be
controlled and triggered via an external PS2 over USB keyboard in conjunction with the
MicroBlaze soft-processor. Refer to Figure 1 for an overview of the system Block Diagram.

The motivation behind MusiLinx is the team’s intrigue with music and how it is a shared
language across all cultures. With this in mind, our team’s intention was to create a product
which is musically playable and accessible to people regardless of their educational background.
Also, the history of technology centered around media and music is fascinating for its direct
influence on the way music is created, captured, processed and distributed. With the advent of
digital technology, music creation and most of the associated tools have moved toward fully
digital CPU-based computers. As a result, where most of the technology was originally analog,
and therefore able to process audio signals in real-time and mostly in parallel, the industry’s
move towards software has presented a challenge. The challenge being that software based
solutions are not able to keep up with performance requirements, such as real-time processing,
and are deployed on CPUs which are inherently serial. Hence, our team decided to create an
instrument on an FPGA, since it will have the benefits of digital technology while exploiting the
parallelism and real-time processing capabilities due to its faster processing speeds in
comparison to CPUs.

Figure 1: Overview of the system block diagram.

1



2.0 Outcomes

The outcomes of this project are broken into three categories: Results, Possible Further
Improvements, and Future Designer Recommendations.

Results
MusiLinx worked as initially intended, as shown in Table 1, audio was synthesized by the
different stages from creation, to propagation, to audio output. The tuning for all the voices is
within +/- 5 cents and is playable over PS2 protocol using a keyboard. There are 5 different
functional modes, including monophonic, chord, and piano modes. More audio voices can easily
be added to the voice bank and more presets can be added for the different songs that can be
arranged.

Table 1: Proposed Features and Their Statuses

Features Status

Synthesize audio from sources, sequencers and ADSR. Completed

Control ADSR and VCO modes. Completed

Control key options (e.g., notes, chords, presets) with GUI. Modified + Completed: Moved
from GUI control to keyboard

Propagate audio through fabric to the output speaker. Completed

Microblaze control for switching audio voices. Completed

Possible Further Improvements
A polyphonic mode and control can be added to diversify the music produced. As well as
creating a custom GUI to control input of the user-controlled keys, the GUI could have displayed
system state in response to the keyboard input keys that are triggered. Finally, user input controls
could be added to expand the options for audio production, such as increasing the range of
ADSR values or adjusting the source waveforms frequencies.

Future Designer Recommendations
Working on a board with an easier navigation of an audio codec would be much more preferred
as the one for the Digilient Nexys Video Board was not pre-configured to assist with audio
propagation. Furthermore, modifications should be applied for the triggering of the audio voices
to ensure timing constraints are not violated; as these signals travel long distances and tend to run
into timing issues.

2



3.0 Project Schedule

The following is a detailed timeline of the project, milestones achieved, tasks completed, and any
dependencies among tasks. The schedule is presented in the form of a Gantt chart, shown in
Figure 2, which provides a visual representation of the project timeline. The team had decided to
split the building of MusiLinx project into two stages: Stage 1 (Milestones #1 to #3) was to build
a basic version of the Audio Stream and Stage 2 (Milestones #4 to #6) was to integrate multiple
Audio Streams together to be controlled by the MicroBlaze. This split was chosen such that the
team would have a working demo for the Mid-Project presentation.

3



Figure 2: MusiLinx Project Schedule 4



4.0 Description of the Blocks

As shown in Figure 1, there are two types of IP blocks used within MusiLinx: Custom IPs (IPs
created by the team) and Xilinx / Digilent IPs (IPs provided by Xilinx or Digilent).

4.1 Custom IPs
The custom IPs, created by this team, were used to generate and transmit audio signals based on
user inputs. Since this is not a problem that has been done before, no existing IPs exist that fit
MusiLinx’s needs.

4.1.1 AudioVoice
The AudioVoice IP is responsible for generating the audio samples that are played by MusiLinx.
As shown in Figure 3, the AudioVoice module is made of three sub-modules: the Oscillator,
VCA, and ADSR. Each of these modules require parameters to be set, which is handled in the IP
by an AXI-Lite Slave Register Interface. For this project audio samples are represented as 16-bit
integers; as such, the output of the AudioVoice is a 16-bit integer representing the amplitude of
the sound wave at a given point in time.

Figure 3: High-Level Diagram of the AudioVoice Module

The Oscillator Module
The Oscillator module is capable of generating three types of waves: triangle, sawtooth, and
square. The wave that the Oscillator will generate is configured by the wave_select parameter.
The period of the generated wave is configured by the half_period parameter, which is half of the
desired period in audio clock cycles (sample rate). The half_period parameter can be derived
from the desired audio frequency by the formula shown in Equation 1.

ℎ𝑎𝑙𝑓 𝑝𝑒𝑟𝑖𝑜𝑑 =
𝑓

𝑠𝑎𝑚𝑝𝑙𝑒

2*𝑓
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

Equation 1: Calculating the Half Period From the Desired Frequency

5



The Oscillator module was built using a Finite State Machine with two states: “rise” and “fall”.
During the rise state, the triangle and sawtooth waves will be rising and the square wave will be
zero. During the fall state, the triangle wave will be falling, the sawtooth will continue to rise,
and the square wave will be 1. Special care is taken during the transition from the fall state to the
rise state for the sawtooth, which will be reset to zero. The states transition only if a pulse from
the AudioPulseGen is sent to this module (as will be explained in Section 4.1.6).

The ADSR Module
ADSR stands for Attack, Decay, Sustain, and Release. Sound produced by real world
instruments tends to have a very specific shape, as shown in Figure 4.

Figure 4: The Shape of the ADSR Curve

The Attack and Decay regions of this curve can be thought of as plucking a string on a guitar,
which has a sharp rise to the max point before falling to a sustained region. The Sustain region
corresponds to how long the note is heard (at a constant volume) before falling silent (the
Release region). This ADSR module will hold the sustain value until the sustain duration is
reached and the trigger is brought low. The ADSR module generates a 16 bit signal
corresponding to the ADSR curve, with the attack, decay, sustain, sustain_duration, and release
parameters corresponding to the size of these regions. The attack, decay, and release parameters
(in seconds) can be found with Equation 2 and the sustain_duration parameter (in seconds) can
be found with Equation 3. The sustain parameter is just the 16 bit signal value the sustain region
should be held at.

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 = 216−1
𝑡

𝑑𝑒𝑠𝑖𝑟𝑒𝑑
*𝑓

𝑠𝑎𝑚𝑝𝑙𝑒

Equation 2: Calculating the attack, decay, and release Parameters From Duration (s)

𝑠𝑢𝑠𝑡𝑎𝑖𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑡
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

* 𝑓
𝑠𝑎𝑚𝑝𝑙𝑒

Equation 3: Calculating the sustain_duration parameter From Desired Time Duration (s)

6



The ADSR module was built using a Finite State Machine with 5 states: Wait, Attack, Decay,
Sustain, and Release. This Finite State Machine is shown in Figure 5, where ‘counter’ is the
output of the ADSR.

Figure 5: Finite State Machine for the ADSR

The VCA Module
The Voltage Controlled Amplifier (VCA) module is named after its real-world counterpart, even
though in this design there is no real “voltage” value. The VCA module takes an input sample
and amplifies it based on a “voltage” signal and a volume signal. In this design, the “voltage” is
the 16-bit output of the ADSR and the volume is a 16-bit, U(0,16) fixed-point parameter (where
the decimal point is right in the front); thus the max volume would be all 1s and the min volume
would be all 0s.

As shown in Figure 6, the VCA module is composed of two multipliers separated by flip-flops.
The flip-flops are used to store the results between clock cycles to allow for a higher max clock
frequency. The product of two 16-bit values is a 32-bit value. After each of the multiplier units,
the lower 16-bits of the results are discarded. This is done for rounding, as the operands of the
multiplier units are U(16,0) and U(0,16) fixed-point, the result would be a U(16,16) fixed-point;
thus, the lower 16 bits are the fractional components of the result and can be ignored (since the
resulting output sample must be a 16-bit integer).

7



Figure 6: High-Level Diagram of the VCA Module

AudioVoice AXI-Lite Register Interface
An AXI-Lite Slave Register Interface was used to make configuring the different AudioVoice
modules easier. It is composed of 8 write-only registers for each of the parameters (explained in
the prior sub-sections). These registers, their memory-mapped addresses, and a description of
their values are listed in Table 2.

Table 2: AudioVoice AXI-Lite Slave Registers

Offset Parameter Description

0x00 wave_select 2-bit value selecting the wave of the oscillator.
- 2’b00: triangle
- 2’b01: sawtooth
- 2’b10: square

0x04 half_period 16-bit value used to specify the frequency of the output
waveform from the oscillator.

0x08 adsr_attack 16-bit value used to specify the attack duration of the ADSR.

0x0C adsr_decay 16-bit value used to specify the decay duration of the ADSR.

0x10 adsr_sustain 16-bit value used to specify the sustain voltage of the ADSR.

0x14 adsr_sustain_duration 16-bit value used to specify the sustain duration of the
ADSR.

0x18 adsr_release 16-bit value used to specify the release duration of the
ADSR.

0x1C volume 16-bit value used to specify the volume of the outputted
audio sample.

A MicroBlaze soft processor is expected to be used to set these parameter values during
operation of the system.

8



4.1.2 Mixer
The Mixer module is a simple module that combines two 16-bit audio samples into one sample.
This is done by adding the two samples together; however, special care must be taken in the case
of an overflow. This can be handled in two ways: Clipping and Averaging. Clipping is when the
output is clamped to the max value of all 1s in the case of overflow and Averaging takes the
average of the two signals (thus never overflowing). The user can set which mode to set the
Mixer in by setting the mode parameter to either 0 (for Clipping) or 1 (for Averaging). Figure 7
shows the high level diagram of the Mixer module.

Figure 7: High-Level Diagram of the Mixer Module

To mix more than two samples together, a tree of Mixer units should be used. For the Clipping
mode the tree need not be balanced, as shown in Figure 8; however, for the Averaging mode the
tree must be balanced as shown in Figure 9. This is because if the mixing tree is unbalanced in
the Averaging mode, mixers closer to the final output sample will have a higher priority than
mixers farther away; and, as such, all audio sample leaf nodes must be at the same depth.

Figure 8: Unbalanced Mixer Tree

9



Figure 9: Balanced Mixer Tree

As shown in Figure 9, although the Mixer module closest to the bottom seems redundant, it is
effectively cutting the averaging of samples E and F in half; making the overall averaging equal
amongst the samples.

4.1.3 AudioSampleToAxiStreamAudio
As further explained in Section 4.2.2, in order to communicate with the Audio Codec the audio
samples need to be communicated to the I2S Transmitter IP. As shown in Figure 10, taken
directly from the I2S Transmitter documentation, the communication protocol used for this
transaction is a special flavor of AXI Stream called AXI Stream Audio or AES3.

Figure 10: High Level Diagram of the I2S Transmitter [1]

10



AXI Stream Audio (AES3 Data Format) Protocol
The AXI Stream Audio protocol is based on the AES3 (IEC60958-3) Data Format [1]. Further
documentation is provided for another IP which provides more information on this
communication protocol [2]. As shown in Figure 11, the protocol uses six signals to transmit
different frames of data.

Figure 11: AXI Stream Audio Protocol Timing Diagram [2]

According to the protocol, the sender is expected to send 192 frames before wrapping back to
frame ID 0. Each frame contains sub-frames, shown in Figure 12, that contain the audio data for
each channel of the audio. For example, since this project only needed two channels, a frame
contains two sub-frames which transmit the sample going to channel 1 and the sample going to
channel 2.

Figure 12: AXI Stream Audio Sub-Frame TDATA Format [2]

The TVALID and TREADY signals are straightforward and match the AXI standard. The TID is
also very simple and is just what channel the sub-frame’s data is for. As shown in Figure 12, the
TDATA signal is where things get complicated. The TDATA signal is 32 bits wide and contains
three portions: the Preamble, the Audio Word, and the VUCP.

The Preamble will be one of three values: BSYNC (4’b0001), SF1SYNC (4’b0010), and
SF2SYNC (4’b0011). Odd channels always have a SF2SYNC Preamble. Even channels usually
have a SF1SYNC unless it is the very first frame (frame 0); in that case, the BSYNC is used.
This is shown (somewhat poorly) in Figure 11.

The Audio Word can either be 24 or 16 bits wide. As shown in Figure 12, when the Audio Word
is 24-bit it fills the entire space with the least significant bit being located at b4. When the Audio
Word is 16 bits (as in this project), the least significant 8 bits (b4 - b11) are padded with zeros
and the rest is filled with the 16 bit Audio Word.

11



VUCP stands for Validity bit, User bit, Channel Status bit, and Parity bit. The Validity and User
bits are not explained anywhere in the documentation and, from experimentation, are not used
for the I2S Transmitter; thus they are always tied to logic zero. The parity bit is supposed to be
even parity over the sub-frame except for the preamble; however, from experimentation, this is
also unused by the I2S Transmitter IP and is also tied to logic zero. The Channel Status bit is the
most complicated and is the reason why there are 192 frames. The Channel Status is a 192-bit
word that is used to communicate information about the audio such as the sample rate, the
number of channels, and more [3]. Each bit of this Channel Status word is sent, one at a time, in
each sub-frame per frame. This is shown (also somewhat poorly) in Figure 11. For this project,
the module uses a preset Channel Status used in an example provided by the I2S Transmitter IP;
however, the actual value seems very odd and is unlikely to be transmitting any information;
likely this also goes unused for the I2S Transmitter IP.

Building the Module
To build the module to translate the audio samples, generated by the AudioVoice module, into
the AXI Stream Audio protocol, the demo code provided by the I2S Transmitter IP was used as a
guide [1]. The AXIS Data Generator module was designed to send pre-made samples of audio to
the I2S Transmitter. This module tries to send all of its data continuously until it fully fills the
FIFO in the I2S Transmitter. This did not work directly for this project as the data is generated
just-in-time by the AudioVoice and, to reduce latency, the data cannot be backed up into a FIFO.
As such, the demo code was modified such that it would take an enable signal, which is a pulse
to signify to the module to send a frame to the I2S Transmitter. This enable signal was tied to the
AudioPulseGen module (explained in Section 4.1.6), which sends a pulse at the sampling
frequency.

4.1.4 Sequencer
The Sequencer Module generates a trigger signal based on a given sequence and the tempo
(signal from the TempoGenerator module described in Section 4.1.5). Figure 13 shows an
example sequence and the resulting trigger signal which can be used in the AudioVoice module
to trigger the ADSR module.

12



Figure 13: Example Sequence and Trigger Output

The Sequencer module was built using a simple counter that looks-up into the sequence register
to produce the trigger. The counter counts on each pulse of the tempo. This allows the sequence
to simulate a note being held down by having a sequence of all ones. The length of the sequence
can also be set by the user to represent shorter sequences than the number of bits in the register.

The sequence and sequence_length parameters can be set by the MicroBlaze soft-processor using
the AXI-Lite Protocol. The Sequencer IP comes with an AXI-Lite Slave Register Interface with
two read-only registers (offset 0x0 for sequence and offset 0x4 for sequence_length).

4.1.5 TempoGenerator
To produce sound that occurs at regular intervals, a generator is required to keep the tempo. The
TempoGenerator module creates a pulse at a regular interval. The rate can be set using the
tempo_rate parameter. The parameter can be calculated from a desired tempo, in Beats Per
Minute (BPM), using Equation 4.

𝑡𝑒𝑚𝑝𝑜 𝑟𝑎𝑡𝑒 =
60𝑓

𝑠𝑎𝑚𝑝𝑙𝑒

𝑏𝑝𝑚 − 1

Equation 4: Calculating the tempo_rate From the Desired BPM

The TempoGenerator module is a simple counter that counts up to the tempo_rate parameter, and
when it is about to roll-over it produces a pulse. Similar to the AudioVoice module, it is
interacted with by the MicroBlaze using an AXI-Lite Slave Register interface. It only contains
one read-only register for tempo_rate, located at the base memory location.

13



4.1.6 AudioPulseGen
The Audio Clock is a 96 kHz clock generated by the I2S Transmitter IP that is used to send the
audio sample rate to the Audio Codec. This clock is much slower than the System Clock, which
may run as high as 100 MHz. It is also more efficient and would produce lower latency to do
work on the System Clock; however, the generation of each audio sample must be triggered on
the rising edge of the Audio Clock. It is necessary to create a pulse train, synchronized to the
System Clock, that produces a pulse for exactly one cycle every time the Audio Clock transitions
from low to high.

The AudioPulseGen module takes in the Audio Clock and System Clock and generates the
necessary pulse train. As shown in Figure 14, the system is composed of two parts: the
Synchronizer and the Positive Edge Detector.

Figure 14: Schematic of the AudioPulseGen Module

The Synchronizer is used to resolve metastability that may occur when capturing the Audio
Clock signal using a flip-flop clocked by the System Clock. If the Audio Clock transitions during
the hold or setup time of the flip-flop, metastability may occur. The extra flip-flops are used to
allow the metastability to stabilize before being used within the system. A Xilinx Parameterized
Macro (XPM) was used to build this synchronizer [4]. The ‘xpm_cdc_single’ macro generates
the flip-flops used in the synchronizer and tells the timing analysis within Vivado that
synchronization is occurring (to tell the tool that we know there is a timing violation and we are
handling it properly). This prevents the tool from flagging that there is a timing violation here,
when there is not.

The Positive Edge Detector is a simple circuit that produces a logic 1 if the previous value of
Audio Clock was a 0 and the current value is 1. This is done after the synchronizer to ensure that
the Audio Clock being sampled is not metastable. If the Audio Clock were to transition from 0 to
1 at a bad time and goes metastable, the value will randomly resolve to either 0 or 1 by the time
it exits the synchronizer. If the value resolves to zero, then the positive edge will be detected on
the next clock cycle; if the value resolves to one, then the positive edge will be detected and on
the next clock cycle the Audio Clock value would still be a one and not produce another pulse.
The same is true on the falling edge. As such, it is extraordinarily unlikely that errors or glitches
should occur in the case of metastability.

14



The AudioPulseGen’s pulse train is fed into the AudioVoice, Tempo Generator, and the
AudioSampleToAxiStreamAudio. This triggers the oscillator to generate the next audio sample,
allows the tempo to count time, and sends the previously generated sample to the I2S
Transmitter. This means that every sample is generated and then sent to the Audio Codec every
sample period.

4.2 Xilinx / Digilent IPs
The following are IPs provided by external sources, not custom designed by this team.

4.2.1 AXI IIC Bus Interface
The AXI IIC Bus Interface IP by Xilinx is used in MusiLinx to allow the MicroBlaze processor
to configure the on-board Audio Codec (ADAU1761) at system boot-up. In other words, the
MicroBlaze is used to send read and write commands to the Control Registers of the Audio
Codec to route and properly gain stage the audio being generated within the FPGA fabric out
onto external speakers; however, the MicroBlaze follows the AXI protocol and so the AXI IIC
Bus Interface IP was used to convert these AXI messages into the I2C protocol such that the
Audio Codec could properly accept the incoming commands. Note, this IP was used simply to
send configuration commands for the Audio Codec. The I2S Transmitter, described below, is
responsible for the transmission of the audio data.

4.2.2 I2S Transmitter
The I2S Transmitter IP by Xilinx is used in MusiLinx to provide a path for the synthesized audio
to be transmitted from the FPGA fabric to the on-board Audio Codec. Specifically, the I2S
Transmitter converts AXI Audio Stream compliant data into I2S compliant data.

4.2.3 MicroBlaze
The Embedded MicroBlaze Soft-Processor is used in MusiLinx to configure various parts of the
system at boot-up as well as provide system control to the user. Firstly, the MicroBlaze
configures the AXI Interrupt Controller, then the I2S Transmitter IP and finally the Audio Codec.
The MicroBlaze then enters into a while loop waiting for an interrupt signal from the PS2-AXI
Receiver IP which, when received, will cause the MicroBlaze to enter into an Interrupt Service
Routine (ISR) which decodes the incoming PS2 messages and routes them to the appropriate
parts of the system such as triggering Audio Voices or changing ADSR parameters.

4.2.4 AXI GPIO
The AXI GPIO IP by Xilinx is used in MusiLinx to allow for the MicroBlaze to communicate
directly with all 32 Audio Voices inside of the FPGA fabric. Depending on the Mode of the
system (monophonic, chord, piano, etc…) the MicroBlaze will write into a 32-bit register inside
of the AXI GPIO IP in such a way to trigger the appropriate voices.

15



4.2.5 PS2-AXI Receiver
The PS2-AXI Receiver IP by Digilent is used in MusiLinx to allow for the keyboard to be used
within the system to play the synthesizer and change its modes.

4.2.6 AXI Interrupt Controller
The AXI Interrupt Controller IP by Xilinx is used in MusiLinx to allow the PS2-AXI Receiver IP
to interrupt and trigger the appropriate ISR to control the system.

5.0 Description of the Design Tree
The source code for the design is located in a public GitHub repository [5]. The repository
includes 5 directories which may be useful to the reader: AudSynth, IP_src, IP_tests, and doc.
One will also find a README file including a description of MusiLinx, how to use MusiLinx,
the repository structure of the GitHub, the names of the team members, and acknowledgements.

This Final Report as well as a video demonstrating MusiLinx can be found within the doc folder.
The reader is highly recommended to watch this video. The IP_src and IP_tests folders contain
Verilog code used to make and test the IPs explained in Section 4.1. The AudSynth folder
contains the Vivado project files that can be used to run MusiLinx on a Nexys Video Artix-7
FPGA; including the final versions of all the IPs in a folder named ‘repo’.

6.0 Tips and Tricks

The following are Tips and Tricks the team felt would be useful for future projects in ECE532.

6.1 Tips and Tricks for the Technical Aspect of any project
Before attempting to develop a feature from the ground up, do your due diligence and research.
Use google scholar to search for academic papers, books and other online resources such as
datasheets and reference manuals. There is a very good chance that what you’re looking to
develop has already been done and their findings might be useful to you in avoiding common
pitfalls and help speed your development cycle. This is also essential if you or any other team
member are missing prerequisite knowledge in the specific field of the product you are
developing.

Find Demo projects by the manufacturer of the development board. This will clarify how certain
features of the board work.

Be humble and ask for help from your team members and from the course staff. Time is limited
in this course, it's important to know when and how to ask for help.

Simulate, simulate, simulate (When possible).

16



6.2 Tips and Tricks for Team Dynamics
Prioritize team building activities early on in the semester in order to make sure that every
member feels heard and valued. Remember that four members can accomplish much more than
what one or two members can accomplish within the same time frame!

7.0 User guide to Musilinx

Multiple modes were developed for playing Musilinx using a keyboard for a versatile user
experience. Mode F1 offers a wide range of notes from C3 to G5, with the placement of each
note shown in Figure 15. Mode F2 is designed for chords, making it easier for users to play
chords by pressing a single key. This mode provides a variety of chords to be played, as shown in
Figure 16. Mode F3 transforms the keyboard into a piano, allowing users to play melodies in a
piano-like manner. More details about this mode can be found in Figure 17. Musilinx also
includes the option to play pre-registered songs by pressing any key in any order, which can be
activated by pressing F4 and F5 to play "Für Elise" and "Gymnopédie" respectively; shown in
Figure 18 and Figure 19. Additionally, different keys are designed to control various sound
features, such as keys 1, 2, and 3 to adjust the release time, and keys 4, 5, and 6 to adjust the
attack time. Lastly, users can change the waveform with keys 7, 8, and 9 to choose between
triangle, sawtooth, and square waveform, respectively. A video of MusiLinx, in action, can be
found in the GitHub (as mentioned in Section 5.0).

Figure 15: Monophonic Mode (Mode F1)

17



Figure 16: Chord Mode (Mode F2)

Figure 17: Piano Mode (Mode F3)

Figure 18: “Für Elise” Sequenced Song Mode (Mode F4)

18



Figure 19: “Gymnopédie” Sequenced Song Mode (Mode F4)

19



References

[1] “I2S Transmitter and I2S Receiver v1.0.” Xilinx, 10-Nov-2021.
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/i2s/v1_
0/pg308-i2s.pdf

[2] “UHD SDI Audio LogiCORE IP Product Guide,” AMD Adaptive Computing
Documentation Portal. [Online]. Available:
https://docs.xilinx.com/r/en-US/pg309-v-uhdsdi-audio/AXI4-Stream-Audio-Interface.
[Accessed: 11-Apr-2023].

[3] “SPECIFICATION OF THE DIGITAL AUDIO INTERFACE (The AES/EBU
interface).” European Broadcasting Union, Geneva, Switzerland, 2004.
https://tech.ebu.ch/docs/tech/tech3250.pdf

[4] “Versal Architecture AI Core Series Libraries Guide,” AMD Adaptive Computing
Documentation Portal. [Online]. Available:
https://docs.xilinx.com/r/en-US/ug1353-versal-architecture-ai-libraries/XPM_CDC_PUL
SE. [Accessed: 11-Apr-2023].

[5] https://github.com/AlexandreSinger/ECE532-Project

*Keyboard layouts were designed using Keyboard Layout Editor website
http://www.keyboard-layout-editor.com/#/

20


